A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres (2024)

  • Chernobrod, B. M. & Berman, G. P. Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97, 014903 (2005).

    Article Google Scholar

  • Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article CAS Google Scholar

  • Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article CAS Google Scholar

  • Taylor, J. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article CAS Google Scholar

  • Dolde, F. et al. Electric-field sensing using single diamond spins. Nature Phys. 7, 459–463 (2011).

    Article CAS Google Scholar

  • Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article Google Scholar

  • Sekatskii, S. & Letokhov, V. Nanometer-resolution scanning optical microscope with resonance excitation of the fluorescence of the samples from a single-atom excited center. JETP Lett. 63, 319–323 (1996).

    Article Google Scholar

  • Cuche, A. et al. Near-field optical microscopy with a nanodiamond-based single-photon tip. Opt. Express 17, 19969–19980 (2009).

    Article CAS Google Scholar

  • Neumann, P. et al. Quantum register based on coupled electron spins in a room-temperature solid. Nature Phys. 6, 249–253 (2010).

    Article CAS Google Scholar

  • McGuinness, L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotech. 6, 358–363 (2011).

    Article CAS Google Scholar

  • Kuhn, S., Hettich, C., Schmitt, C., Poizat, J. & Sandoghdar, V. Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy. J. Microsc. 202, 2–6 (2001).

    Article CAS Google Scholar

  • Rondin, L. et al. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. (in the press).

  • Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    Article CAS Google Scholar

  • Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    Article CAS Google Scholar

  • Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article CAS Google Scholar

  • Michaelis, J., Hettich, C., Mlynek, J. & Sandoghdar, V. Optical microscopy using a single-molecule light source. Nature 405, 325–328 (2000).

    Article CAS Google Scholar

  • Kalish, R. et al. Nitrogen doping of diamond by ion implantation. Diamond Relat. Mater. 6, 516–520 (1997).

    Article CAS Google Scholar

  • Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

    Article CAS Google Scholar

  • Hausmann, B. J. et al. Fabrication of diamond nanowires for quantum information processing applications. Diamond Relat. Mater. 19, 621–629 (2010).

    Article CAS Google Scholar

  • Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    Article CAS Google Scholar

  • Van Oort, E. & Glasbeek, M. Optically detected low field electron spin echo envelope modulations of fluorescent N-V centers in diamond. Chem. Phys. 143, 131–140 (1990).

    Article CAS Google Scholar

  • De Lange, G., Ristè, D., Dobrovitski, V. V. & Hanson, R. Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106, 080802 (2011).

    Article CAS Google Scholar

  • Dreau, A. et al. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011).

    Article Google Scholar

  • Grinolds, M. S. et al. Quantum control of proximal spins using nanoscale magnetic resonance imaging. Nature Phys. 7, 687–692 (2011).

    Article CAS Google Scholar

  • Lai, N., Zheng, D., Jelezko, F., Treussart, F. & Roch, J-F. Influence of a static magnetic field on the photoluminescence of an ensemble of nitrogen-vacancy color centers in a diamond single-crystal. Appl. Phys. Lett. 95, 133101 (2009).

    Article Google Scholar

  • Buchler, B. C., Kalkbrenner, T., Hettich, C. & Sandoghdar, V. Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. Phys. Rev. Lett. 95, 063003 (2005).

    Article CAS Google Scholar

  • Bradac, C. et al. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nature Nanotech. 5, 345–349 (2010).

    Article CAS Google Scholar

  • Pezzagna, S. et al. Nanoscale engineering and optical addressing of single spins in diamond. Small 6, 2117–2121 (2010).

    Article CAS Google Scholar

  • Naydenov, B. et al. Increasing the coherence time of single electron spins in diamond by high temperature annealing. Appl. Phys. Lett. 97, 242511 (2010).

    Article Google Scholar

  • Wolny, F. et al. Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy. Nanotechnology 21, 435501 (2010).

    Article CAS Google Scholar

  • Kohashi, T., Konoto, M. & Koike, K. High-resolution spin-polarized scanning electron microscopy (spin SEM). J. Electron Microsc. 59, 43–52 (2010).

    Article CAS Google Scholar

  • Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article CAS Google Scholar

  • Recher, P. & Trauzettel, B. Quantum dots and spin qubits in graphene. Nanotechnology 21, 302001 (2010).

    Article Google Scholar

  • Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article CAS Google Scholar

  • Lee, C., Gu, E., Dawson, M., Friel, I. & Scarsbrook, G. Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma. Diamond Relat. Mater. 17, 1292–1296 (2008).

    Article CAS Google Scholar

  • Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article CAS Google Scholar

  • A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Twana Towne Ret

    Last Updated:

    Views: 5691

    Rating: 4.3 / 5 (64 voted)

    Reviews: 87% of readers found this page helpful

    Author information

    Name: Twana Towne Ret

    Birthday: 1994-03-19

    Address: Apt. 990 97439 Corwin Motorway, Port Eliseoburgh, NM 99144-2618

    Phone: +5958753152963

    Job: National Specialist

    Hobby: Kayaking, Photography, Skydiving, Embroidery, Leather crafting, Orienteering, Cooking

    Introduction: My name is Twana Towne Ret, I am a famous, talented, joyous, perfect, powerful, inquisitive, lovely person who loves writing and wants to share my knowledge and understanding with you.